16 resultados para b1H-adrenoceptors

em Queensland University of Technology - ePrints Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The 1AR has two binding sites which can be activated to cause cardiostimulation. The first, termed, 1HAR (high affinity site of 1AR) is activated by noradrenaline and adrenaline and is blocked by relatively low concentrations of β-blockers including carvedilol (Kaumann and Molenaar, 2008). The other, termed, 1LAR (low affinity site of 1AR) has lower affinity for noradrenaline and adrenaline and is activated by some β-blockers including CGP12177 and pindolol, at higher concentrations than those required to block the receptor (Kaumann and Molenaar, 2008). (-)-CGP12177 is a non-conventional partial agonist that causes modest and transient increases of contractile force in human atrial trabeculae (Kaumann and Molenaar, 2008). These effects are markedly increased and maintained by inhibition of phosphodiesterase PDE3. The stimulant effects of (-)-CGP12177 at human β1ARs was verified with recombinant receptors (Kaumann and Molenaar, 2008). However, in a recent report it was proposed that the positive inotropic effects of CGP12177 are mediated through 3ARs in human right atrium (Skeberdis et al 2008). This proposal was not consistent with the lack of blockade of (-)-CGP12177 inotropic effects or increases in L-type Ca2+ current (ICa-L ) by the β3AR blocker 1 μM LY748,337 (Christ et al, 2010). On the otherhand, (-)-CGP12177 increases in inotropic effects and ICa-L were blocked by (-)-bupranolol 1-10 μM (Christ et al, 2010). Chronic infusion of (-)-CGP 12177 (10 mg/Kg/24 hours) for four weeks in an aortic constriction mouse model of heart failure caused an increase in left ventricular wall thickness, fibrosis and inflammation-related left ventricular gene expression levels. Christ T et al (2010) Br J Pharmacol, In press Kaumann A and Molenaar P (2008) Pharmacol Ther 118, 303-336 Skeberdis VA et al (2008) J Clin Invest, 118, 3219-3227

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(-)-CGP12177 is a non-conventional partial agonist that causes modest and transient increases of contractile force in human atrial trabeculae (Kaumann and Molenaar, 2008). These effects are markedly increased and maintained by inhibition of phosphodiesterase PDE3. As verified with recombinant receptors, the cardiostimulant effect of (-)-CGP12177 is mediated through a site at the beta1-adrenoceptor with lower affinity (beta1LAR) compared to the site through which (-)-CGP12177 antagonizes the effects of catecholamines (beta1HAR). However, in a recent report it was proposed that the positive inotropic effects of CGP12177 are mediated through beta3-adrenoceptors (Skeberdis et al 2008). We therefore investigated whether the effects of (-)-CGP12177 on human atrial trabeculae are antagonized by the beta3-adrenoceptor-selective antagonist L-748,337 (1 microM). (-)-CGP12177 (200 nM) caused a stable increase in force which was significantly reduced by the addition of (-)-bupranolol (1 microM), P = 0.002, (basal 4.45 ± 0.78 mN, IBMX (PDE inhibitor) 5.47 ± 1.01 mN, (-)-CGP12177 9.34 ± 1.33 mN, (-)-bupranolol 5.79 ± 1.08 mN, n = 6) but not affected by the addition of L-748,337 (1 microM), P = 0.12, (basal 4.48 ± 1.32 mN, IBMX 7.15 ± 2.28 mN, (-)-CGP12177 12.51 ± 3.71 mN, L-748,337 10.90 ± 3.49 mN, n = 6). Cumulative concentration-effect curves for (-)-CGP12177 were not shifted to the right by L-748,337 (1 microM). The –logEC50M values of (-)-CGP12177 in the absence and presence of L-748,337 were 7.21±0.09 and 7.41±0.13, respectively (data from 25 trabeculae from 8 patients, P=0.2) The positive inotropic effects of (-)-CGP12177 (IBMX present) were not antagonized by L-748,337 but were blunted by (-)-bupranolol (1 microM). The results rule out an involvement of beta3-adrenoceptors in the positive inotropic effects (-)-CGP12177 in human right atrial myocardium and are consistent with mediation through beta1LAR. Kaumann A and Molenaar P (2008) Pharmacol Ther 118, 303-336 Skeberdis VA et al (2008) J Clin Invest, 118, 3219-3227

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Purpose The β1-adrenoceptor has at least two binding sites, high and low affinity sites (β1H and β1L, respectively), which mediate cardiostimulation. While β1H-adrenoceptor can be blocked by all clinically used β-blockers, β1L-adrenoceptor is relatively resistant to blockade. Thus, chronic β1L-adrenoceptor activation may mediate persistent cardiostimulation, despite the concurrent blockade of β1H-adrenoceptors. Hence, it is important to determine the potential significance of β1L-adrenoceptors in vivo, particularly in pathological situations. Experimental Approach C57Bl/6 male mice were used. Chronic (4 or 8 weeks) β1L-adrenoceptor activation was achieved by treatment, via osmotic mini pumps, with (-)-CGP12177 (10 mg·kg−1·day−1). Cardiac function was assessed by echocardiography and micromanometry. Key Results (-)-CGP12177 treatment of healthy mice increased heart rate and left ventricular (LV) contractility. (-)-CGP12177 treatment of mice subjected to transverse aorta constriction (TAC), during weeks 4–8 or 4–12 after TAC, led to a positive inotropic effect and exacerbated fibrogenic signalling while cardiac hypertrophy tended to be more severe. (-)-CGP12177 treatment of mice with TAC also exacerbated the myocardial expression of hypertrophic, fibrogenic and inflammatory genes compared to untreated TAC mice. Washout of (-)-CGP12177 revealed a more pronounced cardiac dysfunction after 12 weeks of TAC. Conclusions and Implications β1L-adrenoceptor activation provides functional support to the heart, in both normal and pathological (pressure overload) situations. Sustained β1L-adrenoceptor activation in the diseased heart exacerbates LV remodelling and therefore may promote disease progression from compensatory hypertrophy to heart failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ROLE OF LOW AFFINITY β1-ADRENERGIC RECEPTOR IN NORMAL AND DISEASED HEARTS Background: The β1-adrenergic receptor (AR) has at least two binding sites, 1HAR and 1LAR (high and low affinity site of the 1AR respectively) which cause cardiostimulation. Some β-blockers, for example (-)-pindolol and (-)-CGP 12177 can activate β1LAR at higher concentrations than those required to block β1HAR. While β1HAR can be blocked by all clinically used β-blockers, β1LAR is relatively resistant to blockade. Thus, chronic β1LAR activation may occur in the setting of β-blocker therapy, thereby mediating persistent βAR signaling. Thus, it is important to determine the potential significance of β1LAR in vivo, particularly in disease settings. Method and result: C57Bl/6 male mice were used. Chronic (4 weeks) β1LAR activation was achieved by treatment with (-)-CGP12177 via osmotic minipump. Cardiac function was assessed by echocardiography and catheterization. (-)-CGP12177 treatment in healthy mice increased heart rate and left ventricular (LV) contractility without detectable LV remodelling or hypertrophy. In mice subjected to an 8-week period of aorta banding, (-)-CGP12177 treatment given during 4-8 weeks led to a positive inotropic effect. (-)-CGP12177 treatment exacerbated LV remodelling indicated by a worsening of LV hypertrophy by ??% (estimated by weight, wall thickness, cardiomyocyte size) and interstitial/perivascular fibrosis (by histology). Importantly, (-)-CGP12177 treatment to aorta banded mice exacerbated cardiac expression of hypertrophic, fibrogenic and inflammatory genes (all p<0.05 vs. non-treated control with aorta banding).. Conclusion: β1LAR activation provides functional support to the heart, in both normal and diseased (pressure overload) settings. Sustained β1LAR activation in the diseased heart exacerbates LV remodelling and therefore may promote disease progression from compensatory hypertrophy to heart failure. Word count: 270

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. There are two binding sites on the β1-adrenoceptor (AR), β1H and β1L corresponding to high and low affinity binding sites respectively, which can be activated to cause cardiostimulation. Some β-blockers that block β1AR and β2ARs can activate β1LARs at higher concentrations than those required to cause blockade. The β2AR does not form a corresponding low affinity binding site and therefore we postulated that heterologous amino acids are responsible for the formation of β1LAR. Aim. To investigate whether heterologous amino acids of transmembrane domain V (TMDV) of β1AR and β2ARs contribute to β1LAR. Methods. β1ARs, β2ARs and mutant β1ARs containing all (β1(β2TMDV)AR) or single amino acids of TMDV of the β2AR were prepared and stably expressed in Chinese Hamster Ovary cells. Concentration-effect curves for cyclicAMP accumulation were carried out for (-)-CGP12177 in the absence or presence of (-)-bupranolol. Results. The potencies (pEC50) of (-)-CGP12177 were β2AR (9.24 ± 0.14, n = 5), β1(V230I)AR (9.07 ± 0.07, n = 10), β1(β2TMDV)AR (8.86 ± 0.10, n = 15), β1(R222Q)AR (8.09 ± 0.29, n = 6), β1AR (8.00 ± 0.11, n = 11). The affinities (pKB) of (-)-bupranolol were β2AR (9.82 ± 0.52, n = 5), β1(V230I)AR (7.64 ± 0.12, n = 8), β1(β2TMV)AR (8.06 ± 0.17, n = 8), β1(R222Q)AR (7.33 ± 0.23, n = 5), β1AR (7.23 ± 0.23, n = 5). Discussion. The potency of (-)-CGP12177 was higher at β2AR than at β1AR consistent with activation through a low affinity site at the β1AR (β1LAR). The presence of V230 in β1AR accounted for the lower potency of (-)-CGP 12177. The affinity of (-)-bupranolol was lower at β1AR compared to β2AR. The presence of V230 in β1AR accounted in part for the lower affinity. In conclusion TMDV of the β1AR contributes in part to the low affinity binding site of β1AR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are two binding sites on the β1-adrenoceptor (AR), β1H and β1L corresponding to high and low affinity binding sites respectively, which can be activated to cause cardiostimulation (reviewed Kaumann and Molenaar, 2008). Some β-blockers that block β1AR and β2ARs can activate β1LARs at higher concentrations than those required to cause blockade. The β2AR does not form a corresponding low affinity binding site (Baker et al 2002) and therefore we postulated that heterologous amino acids are responsible for the formation of β1LAR. Our aim was to investigate whether heterologous amino acids of transmembrane domain V (TMDV) of β1AR and β2ARs contribute to β1LAR. β1ARs, β2ARs and mutant β1ARs containing all (β1(β2TMDV)AR) or single amino acids of TMDV of the β2AR were prepared and stably expressed in Chinese Hamster Ovary cells. Concentration-effect curves for cyclicAMP accumulation were carried out for (-)-CGP12177 or (-)-isoprenaline in the absence or presence of (-)-bupranolol. _______________________________________________________________________ (-)-CGP 12177 (-)-Bupranolol affinity (pKB) pEC50 vs (-)-CGP 12177 vs (-)-isoprenaline _______________________________________________________________________ β1AR 8.00 ± 0.11 (11) 7.23 ± 0.23 (5) 9.52 ± 0.28 (5) β2AR (high density) 9.24 ± 0.14 (5) 9.82 ± 0.52 (8) xPaulxxxxxxx β2AR (low density) no effect β1(β2TMV)AR 8.86 ± 0.10 (15) 8.06 ± 0.17 (8) 9.08 ± 0.22 (6) β1(V230I)AR 9.07 ± 0.07 (10) 7.64 ± 0.12 (8) 9.36 ± 0.28 (9) β1(R222Q)AR 8.09 ± 0.29 (6) 7.33 ± 0.23 (5) 9.36 ± 0.08 (6) β1(V230A)AR 7.59 ± 0.09 (6) 7.32 ± 0.24 (4) 8.62 ± 0.18 (5) _______________________________________________________________________ The potency of (-)-CGP12177 was higher at β2AR than at β1AR consistent with activation through a low affinity site at the β1AR (β1LAR) but not β2AR. The presence of V230 in β1AR accounted for the lower potency of (-)-CGP 12177. The affinity of (-)-bupranolol at β1AR and mutants was higher when determined with (-)-isoprenaline than with (-)-CGP 12177. The affinity of (-)-bupranolol determined against (-)-CGP 12177 was lower at β1AR compared to β2AR. The presence of V230 in β1AR accounted in part for the lower affinity. In conclusion V230 of the β1AR contributes in part to the low affinity binding site of β1AR. Baker JG, Hall IP, Hill SJ (2002). Pharmacological characterization of CGP12177 at the human β2-adrenoceptor. Br J Pharmacol 137, 400−408 Kaumann AJ, Molenaar P (2008) The low-affinity site of the β1-adrenoceptor and its relevance to cardiovascular pharmacology. Pharmacol Ther 118, 303-336

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE It has been proposed that BRL37344, SR58611 and CGP12177 activate b3-adrenoceptors in human atrium to increase contractility and L-type Ca2+ current (ICa-L). b3-adrenoceptor agonists are potentially beneficial for the treatment of a variety of diseases but concomitant cardiostimulation would be potentially harmful. It has also been proposed that (-)-CGP12177 activates the low affinity binding site of the b1-adrenoceptor in human atrium. We therefore used BRL37344, SR58611 and (-)-CGP12177 with selective b-adrenoceptor subtype antagonists to clarify cardiostimulant b-adrenoceptor subtypes in human atrium. EXPERIMENTAL APPROACH Human right atrium was obtained from patients without heart failure undergoing coronary artery bypass or valve surgery. Cardiomyocytes were prepared to test BRL37344, SR58611 and CGP12177 effects on ICa-L. Contractile effects were determined on right atrial trabeculae. KEY RESULTS BRL37344 increased force which was antagonized by blockade of b1- and b2-adrenoceptors but not by blockade of b3-adrenoceptors with b3-adrenoceptor-selective L-748,337 (1 mM). The b3-adrenoceptor agonist SR58611 (1 nM–10 mM) did not affect atrial force. BRL37344 and SR58611 did not increase ICa-L at 37°C, but did at 24°C which was prevented by L-748,337. (-)-CGP12177 increased force and ICa-L at both 24°C and 37°C which was prevented by (-)-bupranolol (1–10 mM), but not L-748,337. CONCLUSIONS AND IMPLICATIONS We conclude that the inotropic responses to BRL37344 are mediated through b1- and b2-adrenoceptors. The inotropic and ICa-L responses to (-)-CGP12177 are mediated through the low affinity site b1L-adrenoceptor of the b1-adrenoceptor. b3-adrenoceptor-mediated increases in ICa-L are restricted to low temperatures. Human atrial b3-adrenoceptors do not change contractility and ICa-L at physiological temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

β-Adrenoceptor blocking agents (β-blockers) that at low concentrations antagonize cardiostimulant effects of catecholamines, but at high concentrations also cause cardiostimulation, have been appearing since the late 1960s. These cardiostimulant β-blockers, coined non-conventional partial agonists, antagonize the effects of catecholamines through a high-affinity site (β1HAR), but cause cardiostimulation mainly through a low-affinity site (β1LAR) of the myocardial β1-adrenoceptor. The experimental non-conventional partial agonist (−)-CGP12177 increases cardiac L-type Ca2+ current density and Ca2+ transients, shortens action potential duration but augments action potential plateau, increases heart rate and force, as well as causes arrhythmic Ca2+ transients and arrhythmic cardiocyte contractions. Other β-blockers, which do not cause cardiostimulation, consistently have lower affinity for β1LAR than β1HAR. These sites were verified and the cardiac pharmacology of non-conventional partial agonists confirmed on recombinant β1-adrenoceptors and on β1-adrenoceptors overexpressed into the heart. A targeted mutation of Asp138 to Glu138 virtually abolished the pharmacology of β1HAR but left intact the pharmacology of β1LAR. Non-conventional partial agonists may be beneficial for the treatment of peripheral autonomic neuropathy but probably due to their arrhythmic propensities, may be harmful for the treatment of chronic heart failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Noradrenaline which occurs naturally in the body binds to beta-adrenoceptors on the heart, causing the heart to beat faster and with greater force in response to increased demand. This enables the heart to provide oxygenated blood to vital organs. Prolonged overstimulation by noradrenaline can be harmful to the heart and lead to the progression of heart disease. In these circumstances beta-adrenoceptors are blocked with drugs called beta-blockers. Beta-blockers block the effects of noradrenaline by binding to the same site on the beta-adrenoceptor. Some beta-blockers such as CGP12177 can also cause increases in heart rate. Therefore it was proposed that CGP12177 could bind in a different place to noradrenaline. The aim of this study was to determine where CGP12177 binds to on the beta-adrenoceptor. The results have revealed a separate binding site named beta-1-low. These results may lead to the development of improved -blockers for the management of heart conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose Phosphodiesterases PDE3 and/or PDE4 control ventricular effects of catecholamines in several species but their relative effects in failing human ventricle are unknown. We investigated whether the PDE3-selective inhibitor cilostamide (0.3-1μM) or PDE4 inhibitor rolipram (1-10μM) modified the positive inotropic and lusitropic effects of catecholamines in human failing myocardium. Experimental approach Right and left ventricular trabeculae from freshly explanted hearts of 5 non-β-blocker-treated and 15 metoprolol-treated patients with terminal heart failure were paced to contract at 1Hz. The effects of (-)-noradrenaline, mediated through β1-adrenoceptors (β2-adrenoceptors blocked with ICI118551), and (-)-adrenaline, mediated through β2-adrenoceptors (β1-adrenoceptors blocked with CGP20712A), were assessed in the absence and presence of PDE inhibitors. Catecholamine potencies were estimated from –logEC50s. Key results Cilostamide did not significantly potentiate the inotropic effects of the catecholamines in non-β-blocker-treated patients. Cilostamide caused greater potentiation (P=0.037) of the positive inotropic effects of (-)-adrenaline (0.78±0.12 log units) than (-)-noradrenaline (0.47±0.12 log units) in metoprolol-treated patients. Lusitropic effects of the catecholamines were also potentiated by cilostamide. Rolipram did not affect the inotropic and lusitropic potencies of (-)-noradrenaline or (-)-adrenaline on right and left ventricular trabeculae from metoprolol-treated patients. Conclusions and implications Metoprolol induces a control by PDE3 of ventricular effects mediated through both β1- and β2-adrenoceptors, thereby further reducing sympathetic cardiostimulation in patients with terminal heart failure. Concurrent therapy with a PDE3 blocker and metoprolol could conceivably facilitate cardiostimulation evoked by adrenaline through β2-adrenoceptors. PDE4 does not appear to reduce inotropic and lusitropic effects of catecholamines in failing human ventricle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis investigated how enzymes called phosphodiesterases control changes in contractility mediated by noradrenaline and adrenaline through activation of β1- and β2-adrenoceptors in live human heart tissue from patients with advanced heart failure undergoing transplantation. The study compared patients who had been administered β-blocker medicines metoprolol or carvedilol or no β-blocker treatment. This work helped to further elucidate the complex roles of target receptors and enzymes that are integral to the progression of heart failure, to compare the mechanisms of action of β-blockers currently used to manage heart failure and to identify new drug targets for heart failure treatment.